

"Schleifstaubabsaugungen – Filtertechnik und Schutzkonzepte"

Fachveranstaltung "Sicherheit beim Schleifen - Gesundheitsgefahren bei Schleifarbeiten an Metallen" in BGHM Bildungsstätte Sennfeld

Agenda

Firmenvorstellung Keller Lufttechnik

- wer ist Keller Lufttechnik
- unsere Kompetenz
- unsere Stärke
- unsere Service
- wo finden Sie Keller Lufttechnik

Gegenüberstellung Nassabscheider vs. Trockenfilter + Schutzkonzepte

- konventioneller Nassabscheider Typ VDN
- Anwendung neuer Richtlinien zum Nassabscheider (42. BlmSchV)
- 2druckluftabgereinigtes Trockenfilter mit Funkenvorabscheider
- Komponenten (Filterelemente, usw.)
- Ex-Schutz Möglichkeiten
- Brandschutz Möglichkeiten

Tradition und Innovation

- 1903 als Bauflaschnerei gegründet
- Familienunternehmen in 5. Generation
- ca. 400 Mitarbeiter | ca. 77 Mio. € Umsatz (inkl. Tochterunternehmen)
- heute global präsenter Spezialist für Absaugsysteme zur Luftreinhaltung

Unsere Kompetenz – für jeden Prozess die passende Absauglösung

Unsere Stärke – eine ganzheitliche Betreuung, mit allem was dazu gehört!

Unsere Services – für eine reibungslose Funktion ein Anlagenleben lang!

Unsere Fachleute in Ihrer Nähe

In Deutschland ist Keller Lufttechnik flächendeckend durch Ingenieurbüros und Servicestützpunkte vertreten.

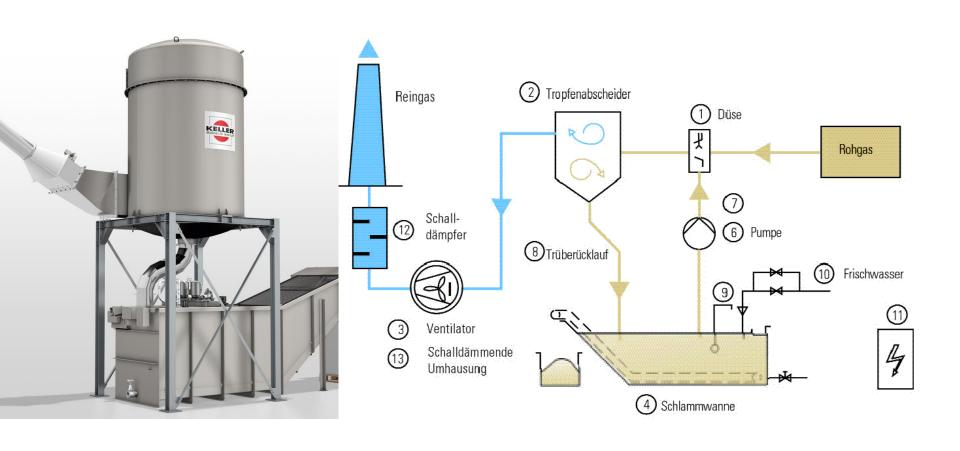
Keller Lufttechnik weltweit aktiv

Keller Lufttechnik ist weltweit erfolgreich: Zur Keller-Gruppe gehören Tochterunternehmen in der Schweiz (St. Gallen), den USA (Fort Mill) und China (Shanghai).

Vertretungen unterhält Keller Lufttechnik darüber hinaus in vielen anderen Ländern.

Agenda

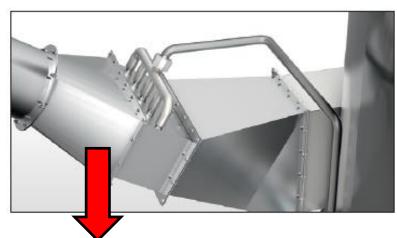
Firmenvorstellung Keller Lufttechnik


- wer ist Keller Lufttechnik
- unsere Kompetenz
- unsere Stärke
- unsere Service
- wo finden Sie Keller Lufttechnik

Gegenüberstellung Nassabscheider vs. Trockenfilter + Schutzkonzepte

- konventioneller Nassabscheider Typ VDN
- Anwendung neuer Richtlinien zum Nassabscheider (42. BlmSchV)
- 2druckluftabgereinigtes Trockenfilter mit Funkenvorabscheider
- · Komponenten (Filterelemente, usw.)
- Ex-Schutz Möglichkeiten
- Brandschutz Möglichkeiten

Abscheidetechnologie – Nassabscheider, Typ VDN


Flüssig-

Rohgas

Im Gas verteilte Flüssigkeitstropfen

Abscheidetechnologie – Nassabscheider, Typ VDN

2 – stufiger Abscheideprozess:

- Benetzung in **Venturikehle**
- zusätzliche Bedüsung der Saugleitung möglich

Abscheidetechnologie – Wasseraufbereitung

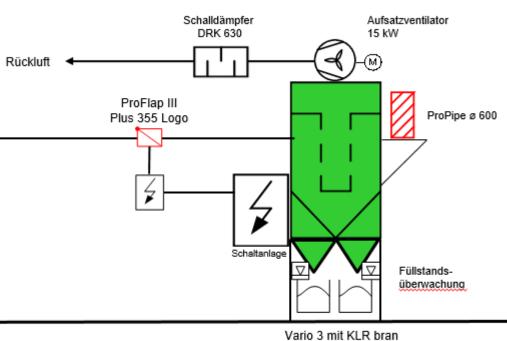
- Geschlossener Wasserkreislauf mit Pumpenbedüsung, ggfl. redundant
- Wasseraufbereitung:
 Sedimentation und Flotation Prinzip
 Austrag über Vorlagebecken mit Ölskimmer

Anwendung neue Normen und Richtlinien

TA-Luft (betrifft Anlagen im Fortluftbetrieb):

neue Verordnung in der 42. BlmSchV (Verabschiedung seit Mitte 2017)

→ Ziel: "...Vorbeugung zum Austrag von Legionellen..."


Pflichten für die Betreiber:

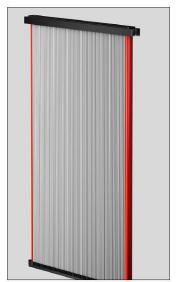
- Betrieb einer Anlage muss den Behörden angezeigt werden (Neuanlagen spätesten 4 Wochen nach der IBN, Bestandsanlagen nach 6 Monaten)
- Erstuntersuchung hinsichtlich Legionellenkonzentration des Betriebswassers (KBE/100ml) 4
 Wochen nach der IBN durch akkreditiertes Prüflaboratorium
- 14-tägige hygienische Überprüfung der Beschaffenheit des Betriebswassers
- **3-monatliche Laboruntersuchungen durch akkreditiertes Prüflaboratorium** (je nach ermittelter Konzentration veränderlich auf 1 bis 6 Monate)
- Anzeige bei den Behörden bei Überschreitung des Prüfwertes / Referenzwertes
- Überprüfung und Einhaltung der Anforderungen alle 5 Jahre durch akkreditierte Inspektionsstelle
- Führen von Checklisten bei IBN (und Wieder-IBN) durch eine "hygienisch fachkundige Person"
- → Keller Lufttechnik arbeitet eng mit akkreditieren Partnern für die Überprüfung und Einhaltung der Anforderungen zusammen

Abscheidetechnologie – Trockenabscheider

Vario 3 mit KLR bran ATEX St1, KST 180, Pmax 8 bar Gehäuse 0,4 bar

Gerätetypen - Baureihen

Trockenfilterbaureihen, Typ Vario eco

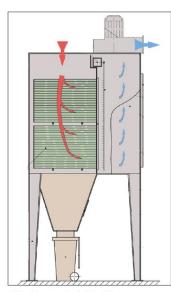

Typ PT

KLR-Filter für

Einbau

den reingasseitigen

KLR-Filter für den rohgasseitigen Einbau


Die Dichtung der Filterplatte befindet sich oberhalb der Kopfleiste

Keller Trockenabscheider VARIO eco

Die Dichtung der Filterplatte befindet sich unterhalb der Kopfleiste

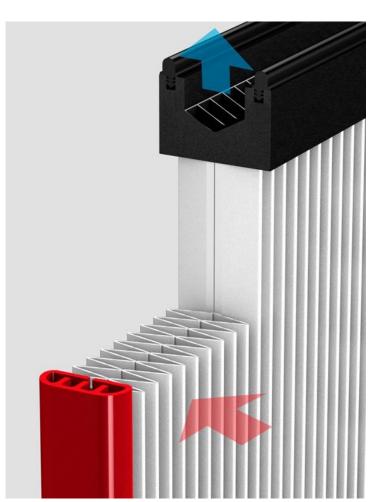
Keller Trockenabscheider PT

Typ Vario: 1.200 – 26.000 m³/h

- Kleine mittlere Luftmengen
- Kompakte, platzsparende Bauweise
- Integrierter Ventilator möglich
- Variabel in Anschluss und Staubaustrag
- **Energieoptimierte Motoren**

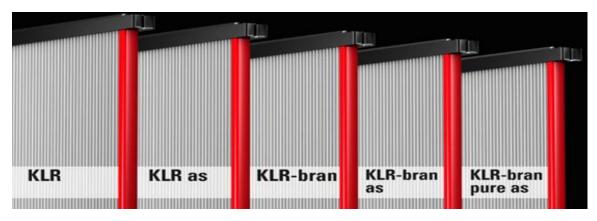
Typ PT: 10.000 m³/h aufwärts

- Für größere Luftmengen
- Ein / Ausbau der Filter im Reingas
- Ventilatoren: aufgebaut oder nebenstehend
- **Energieoptimierte Motoren**
- Modular erweiterbar



Komponenten

KLR-Filter® – Die neue Referenzklasse

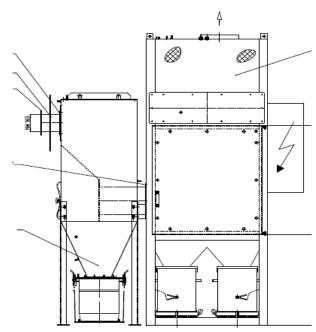

Der Produktname KLR-Filter® steht für Keller Long Run Filter

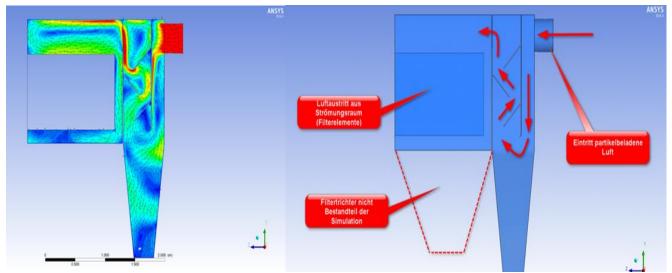
- Selbsttragende, eigensteife Filterplatte aus Polyestermaterial
- mit größtmögliche Filterfläche durch Faltung
- Standzeit : bis zu 20.000 B.Std. !
- bis zu 120.000 Jet Impulse, max. 3 Jahre
- KLR bran → mit PTFE Membran für Rückluftfahrweise geeignet (< 0,1 mg/m³)
- Sehr geringer Druckverlust → im Betrieb zwischen 700 –
 1.200 Pa
- Energiebedarf des Ventilator Antriebes hierdurch reduziert
- geringer Druckluftverbrauch

Ausführungsvarianten

KLR	KLR as	KLR-bran	KLR-bran as	KLR-bran pure as
•				
		•	•	•
•	•	•	•	•
•		•		•
		•		•
				•
	KLR			

Standzeit: bis zu 20.000 Bh oder bis zu 120.000 Abreinigungsintervallen, jedoch max. 3 Jahre *

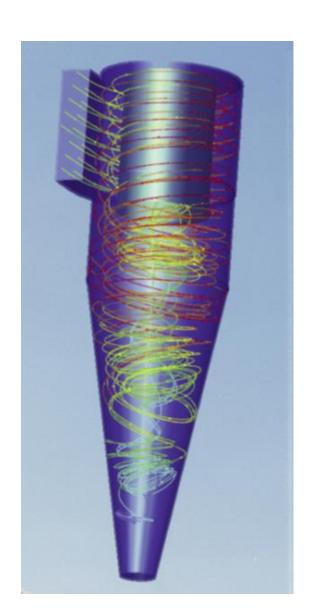

^{*} Bei bestimmungsgemäßer Verwendung nach BWA



Vorabscheider-Prallabscheider Typ PA

Funktion

- Das Rohgas wird im Trichterbereich umgelenkt.
- Die thermische Energie der Partikel wird herabgesetzt
- Größere Partikel werden abgeschieden.
- · Brandrisiko im Filter wird minimiert
- Filterelemente werden weitgehend geschützt
- Entsorgung über untergebauten Eimer



Vorabscheider Zyklon

Funktion

- Zur Verlängerung der Verweilzeit der Funken + Partikeln
- Abbau der Zündquellenenergie durch Reibung ("Fliehkraft")
- Vorausschleusung von energiereichen Partikeln bei Eintrag Zündquellen

Abschätzung des Restrisikos für Zündquelleneintrag

Bewertung der Gefahr von Zündquellen ergibt i.d.R. kein eindeutiges Ergebnis

 auch bei Maßnahmen wie z.B. Funkenvorabscheider kann ein Zündquelleneintrag nicht zu 100% ausgeschlossen werden

Restrisiko besteht grundsätzlich immer

- höheres Restrisiko bei Zündquellenvermeidung
- geringeres Restrisiko bei konstruktivem Explosionsschutz

Restrisiko muss bewertet werden → quantitative Risikobewertung

- Verhältnismäßigkeit (Aufwand / Restrisiko)
- Verantwortung hat der Betreiber
- → Restrisiko muss für den Betreiber akzeptabel sein

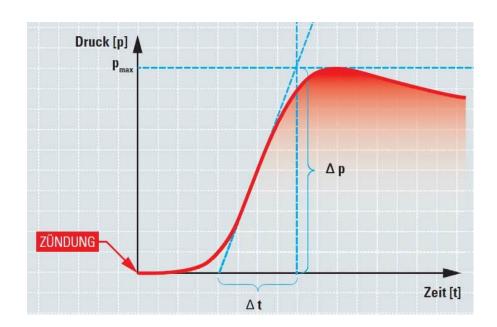
Grundlagen zum Explosionsschutz

Ermittlung von explosionstechnischen Kenngrößen

Bei brennbaren Flüssigkeiten / Gasen:

- Flammpunkt
- Untere Explosionsgrenze (UEG)
- Gasexplosionsgruppe

Bei brennbaren Stäuben:


- Zünd-, Glimmtemperatur
- Untere Explosionsgrenze (UEG)
- Mindestzündenergie (MZE) [mJ]
- Druckanstiegsgeschwindigkeit K_{st}-Wert [bar x m/s]
- Maximaler Explosionsdruck p_{max [bar]}

Explosionstechnische Kenngrößen

- Pmax: max. Explosionsdruck
- K_{St}-Wert: Druckanstiegsgeschwindigkeit

Zuordnung K_{St}-Wert → Staubexplosionsklasse:

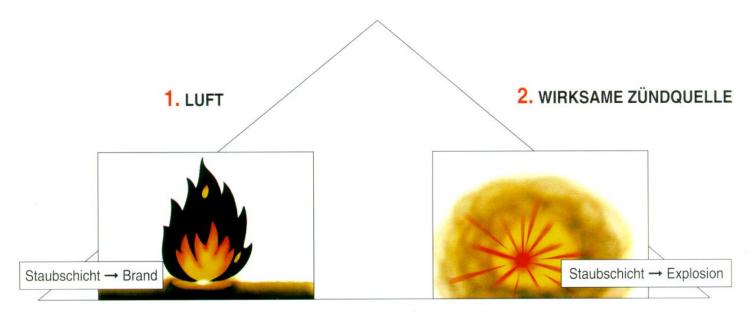
Staubexplosionsklasse	KSt-Wert in bar x m x s-1		
St 1	> 0 bis 200		
St 2	> 200 bis 300 > 300		
St 3			

Geräte und Schutzsysteme gemäß ATEX

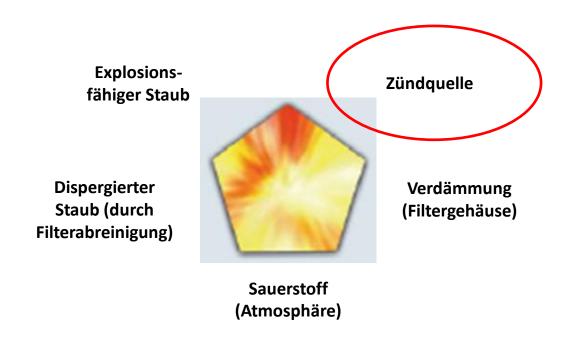
- Zulassung von Schutzsystemen (z.B. Entkopplungseinrichtung)
- Definition von Gerätekategorien je nach Sicherheitsmaß

Kategorie	1		2		3	
Sicherheitslevel	sehr hoch		hoch		normal	
Einsatz in Zone	0/1/2	20/21/22	1/2	21/22	2	22
Atmosphäre	G	D	G	D	G	D

Explosionsschutzdokument

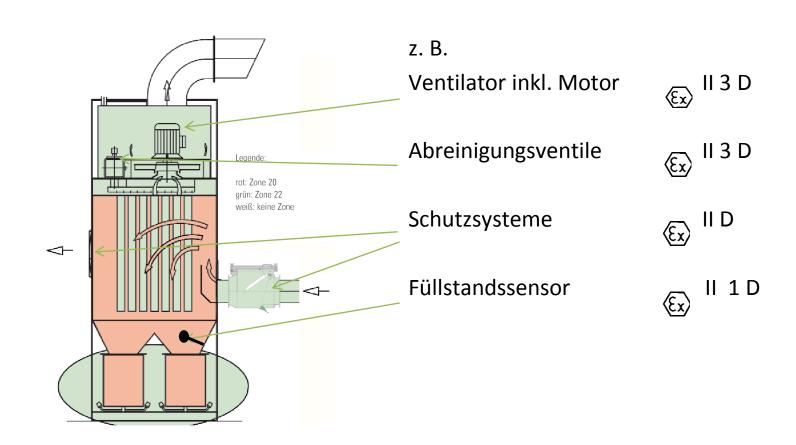

- Inhalt: Ex-Kenngrößen, Zoneneinteilung, Schutzmaßnahmen
- KL erstellt Gefahrenanalyse / Risikobeurteilung gemäß Maschinenrichtlinie
 - Verwendung als Explosionsschutzdokument für den
 Umfang der Entstaubungsanlage
 - Verwendung als Prüfprotokoll für die "Prüfung vor der ersten Inbetriebnahme durch Befähigte Person gemäß BetrSichV"

Grundlagen zum Explosionsschutz


- Rangfolge von Explosionsschutzmaßnahmen
 - Vermeidung von explosionsfähiger Atmosphäre
 - Vermeidung wirksamer Zündquellen
 - Auswirkungen einer Explosion auf ein unbedenkliches Maß beschränken (Konstruktiver Explosionsschutz)

3. BRENNBARE STÄUBE

Explosionsschutzkonzepte



Explosions-Pentagramm

Vermeidung von Zündquellen - anlagenintern

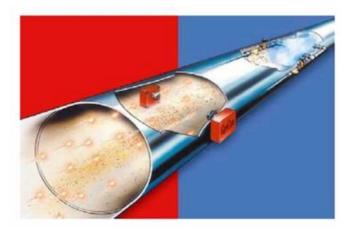
• Innerhalb der Entstaubungsanlage: Verwendung von Geräten mit der für die jeweilige Zone geeigneten Gerätekategorie

Vermeidung von Zündquellen - anlagenintern

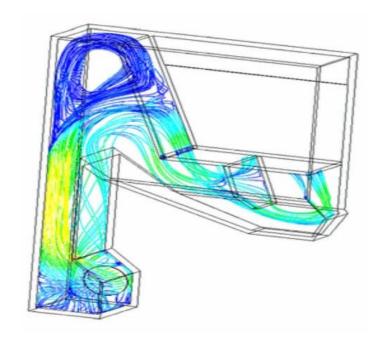
- Erdung von leitfähigen Bauteilen in Ex-Zonen
 - Gefahr von Funkenentladungen
 - Energien > 1000 mJ
- ableitfähiges Filtermaterial nur in besonderen Fällen erforderlich
 - Energie von Büschelentladungen i.d.R. nicht ausreichend zur Zündung explosionsfähiger Stäube
 - erforderlich bei MZE < 3 mJ
 - oder bei leitfähigem Staub(spez. Widerstand < 10⁴ Ohm x m)
 - → trifft auf 99% aller Stäube nicht zu
 - bei Gas-Ex-Zonen erforderlich

ATEX-Anwendung bei Schnecken und ZS

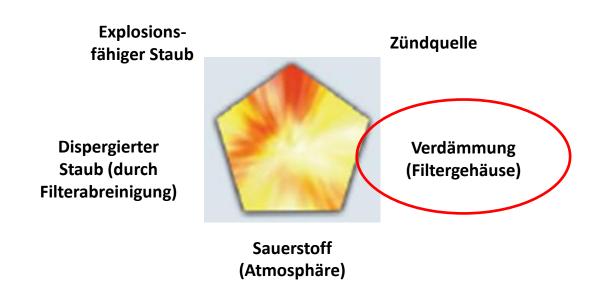
- VDI 2263-6 legt fest, dass diese Bauteile auch unter den Anwendungsbereich der ATEX fallen und entsprechend zugelassen und gekennzeichnet sein müssen
- ZS und Förderschnecken müssen zukünftig mit der entsprechenden Gerätekategorie geliefert werden (i.d.R. zugelassen als Gerät für Zone 20 →Ex II 1D)
- Relativgeschwindigkeit max. 1 m/s
- Unterscheidung zwischen Zulassung
 - als Gerät (Ex II 1 D)
 - als Schutzsystem (Ex II D)
 - Mehrkosten für Förderschnecken mit Kategorie 1D: ca. 10%



Vermeidung von Zündquellen - extern

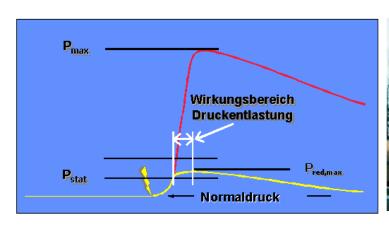

Vermeidung von Zündquellen im Prozess ist oft nicht möglich

- Schleifprozesse
- Strahlanlage
- Werkzeugbruch, Funken in Werkzeugmaschinen
- · etc.


Funkenvorabscheider oder Funkenlöschanlagen

- reduzieren das Risiko eines Zündquelleneintrags
- konstruktiver Explosionsschutz ist trotzdem erforderlich

Explosionsschutzkonzepte



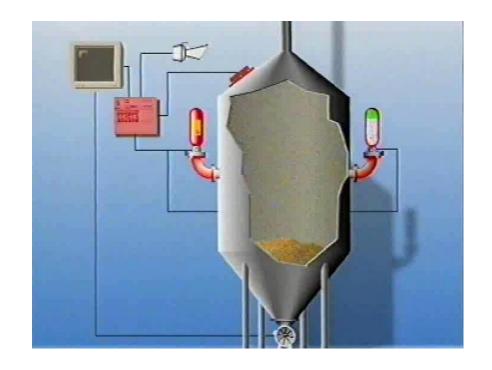
Explosions-Pentagramm

Konstruktiver Explosionsschutz - Druckentlastung

- Berstscheiben
- Flammenaustritt ist zu beachten
 - Aufstellung im Freien
 - Sicherheitsbereich: 10 25 Meter
- Gehäuse druckstoßfest (0,2 – 0,6 bar)
- Entkopplung erforderlich

DRUCK

Konstruktiver Explosionsschutz - Druckentlastung



Konstruktiver Explosionsschutz - Explosionsunterdrückung

Flammenlose Druckentlastung – organische Stäube

- bei Aufstellung der Anlage im Raum
- Q-Box: Berstscheibe kombiniert mit Flammenfilter
- kein Flammenaustritt

Flammenlose Druckentlastung – Metallstäube

nach Prüfnorm EN 16009 ist seit 2012 Einzelprüfung mit jeweiligem Volumen und betreffendem Staub erforderlich

Maisstärke

 $K_{st} = 200$

<u>Aluminiumstaub</u>

 $K_{st} = 110$

Flammenlose Druckentlastung – Metallstäube

- Gruppenabsaugung VARIO-2-P (bis 5500m³/h)
- ProPipePlus: Einzelprüfung für Aluminiumstaub seit August 2014

Ohne ProPipePlus

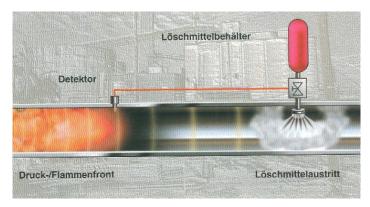
Mit ProPipePlus

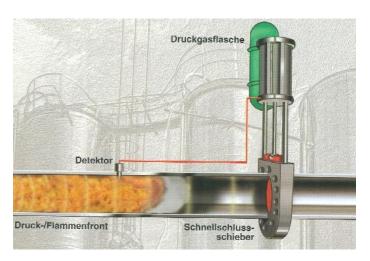
Ergebnisse Einzelprüfung VARIO-2-ProPipePlus

- Prüfung des Gesamtsystems aus
 - Filtergerät
 - flammenlose Entlastung f
 ür Aluminiumstaub
 - trotz senkrechter Umlenkung mit Schutzschild (= "ProPipePlus") kein unzulässig hoher Druckanstieg
 - Entkopplung der Entsorgung und Reingasseite
- kein Sicherheitsbereich erforderlich
 - Schutzschild hat die Kopf-Attrappe vor Verletzungen durch
 Druck oder Temperaturen geschützt
 - reduzierter Platzbedarf
 - bei Standard-Anordnung: 2,5 m Sicherheitsbereich



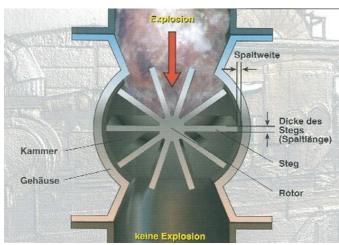
Konstruktiver Explosionsschutz


Explosionstechnische Entkopplung der Saugrohrleitung


Rückschlagklappe

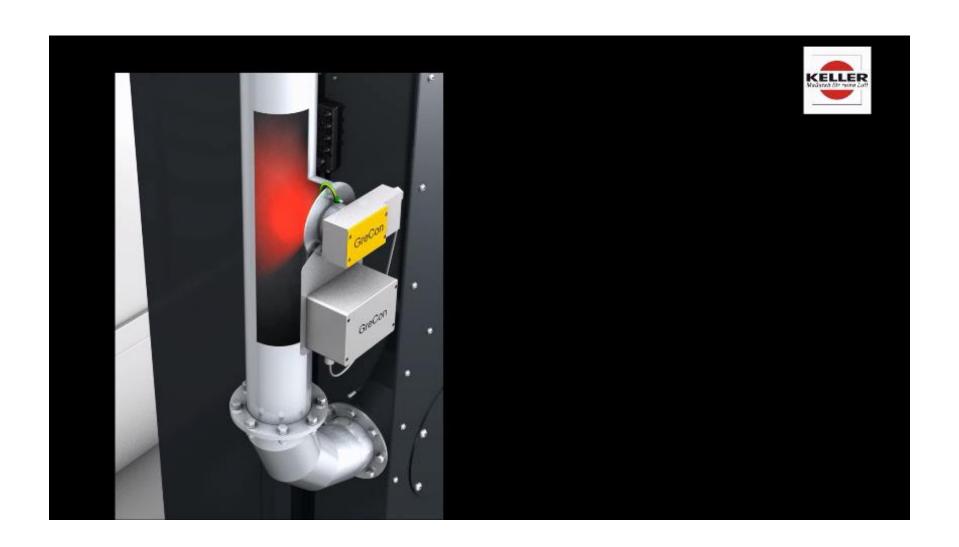
Bersttopf

Löschmittelsperre


Schnellschlussschieber

Explosionstechnische Entkopplung - Zellenradschleuse

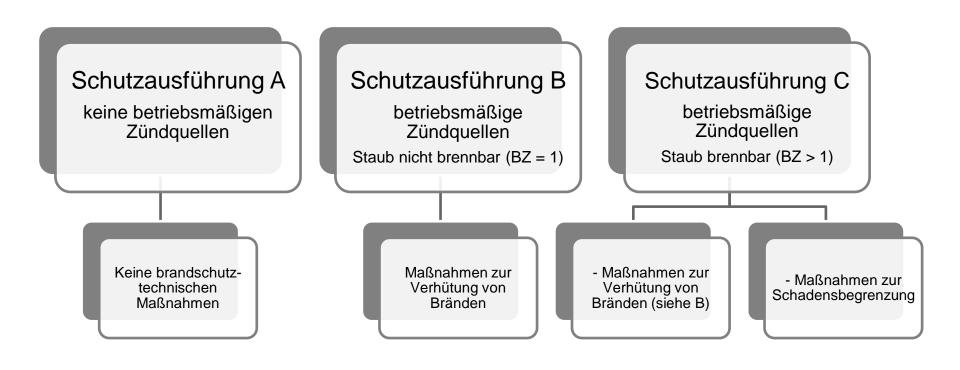
- Entsorgung in druckstoßfeste Behälter oder häufig
- Zellenradschleusen mit Zulassung als Schutzsystem
- Verfügbare ATEX-Zellenradschleusen auf dem Markt waren nicht explizit für Al zugelassen
- Flammendurchschlagsicherheit mit Al-Staub wurde in Kombination mit KL-Filter erfolgreich getestet


Explosionstechnische Entkopplung - Reingasseite

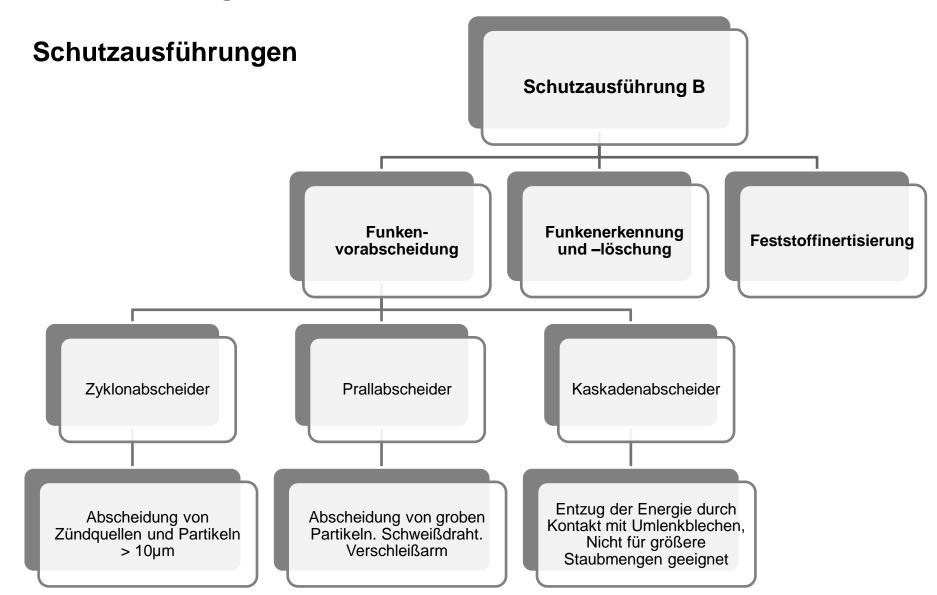
- kein Flammendurchschlag auf die Reingasseite bei KL-Filtern
 - bei organischem Staub
 - bei Aluminiumstaub
- reingasseitige Rohrleitungen können aus Wickelfalz ausgeführt sein
 - kein Aufreißen
 - kein Wegfliegen von Bauteilen

Vorbeugender Explosionsschutz - ProSens

Weiterführende Informationen zum Explosionsschutz

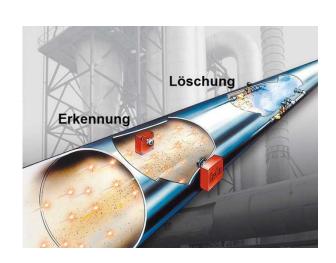

 Auswahl von Explosionsschutzmaßnahmen bei Entstaubungsanlagen www.exschutz.net

 KELLER ist Mitglied im IndEx e.V. www.ind-ex.info



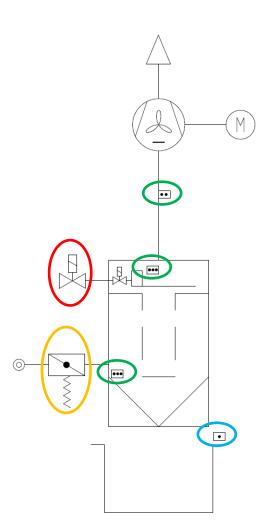
Grundlagen zum Brandschutz

Brandschutz - Möglichkeiten



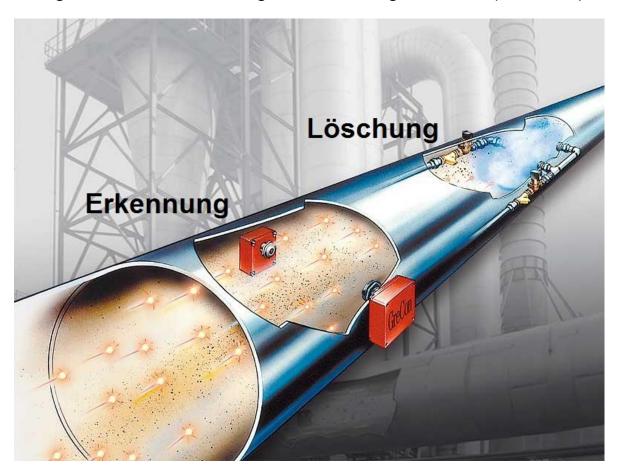
Branderkennung

- Stillstandserkennung
 - Wärmemaximalmelder im Roh- und Reingasbereich
 - Temperaturüberwachung im Trichter
- Betriebserkennung
 - IR-Funkenmelder in Reingasrohrleitung
 - Optional zusätzlicher optischer Rauchmelder (zu empfehlen bei Filterpatronen)
- Brandmeldung
 - Auswerteelektronik UE-01
 - Abschaltung des Ventilators
 - Absperrung Druckluftzufuhr
 - Optische und akustische Warnung durch Hupe und Blitzleuchte an Anlage
 - Meldung an ständig besetzte Stelle



Branderkennung

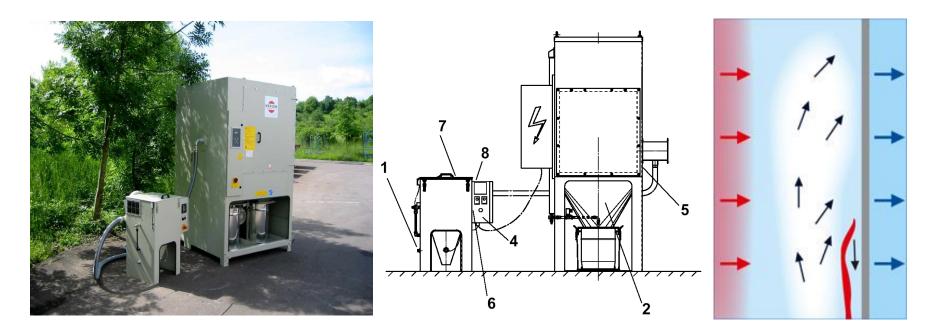
- Separate Druckluftabsperrung
- Branderkennung
 - IR Funkenerkennung
 - Optionaler Rauchmelder
 - Wärmemaximalmelder (roh-/reingasseitig)
- Behälter-Temperaturüberwachung
 - (1 Stk je Trichterspitze)
- Absperrklappe dichtschließend
 - rohgasseitig (nicht erforderlich bei ProFlap)



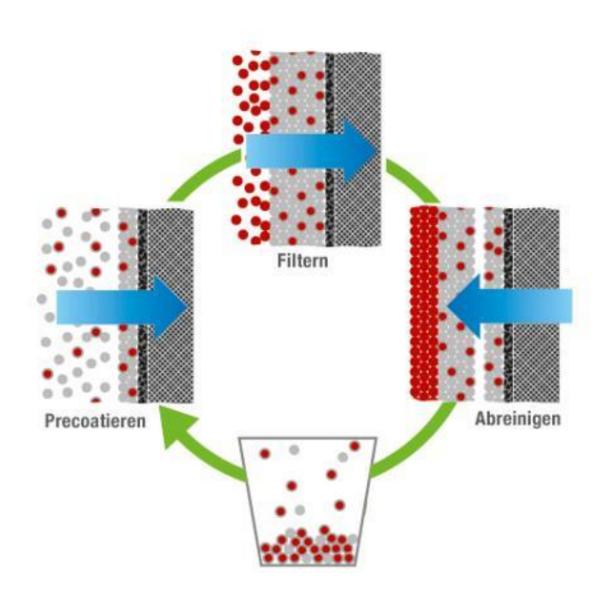
M	Motor
	Ventilator
	Separate Druckluftabsperrung
	Motorische Absperrklappe mit spannungslosem Rücklauf – dicht schließend
•	Behälter- Temperaturüberwachung
• •	IR-Funkenerkennung, optional zzgl. Rauchmelder
•••	Wärmemaximalmelder roh-/ reingasseitig

Funkenerkennung und Funkenlöschung

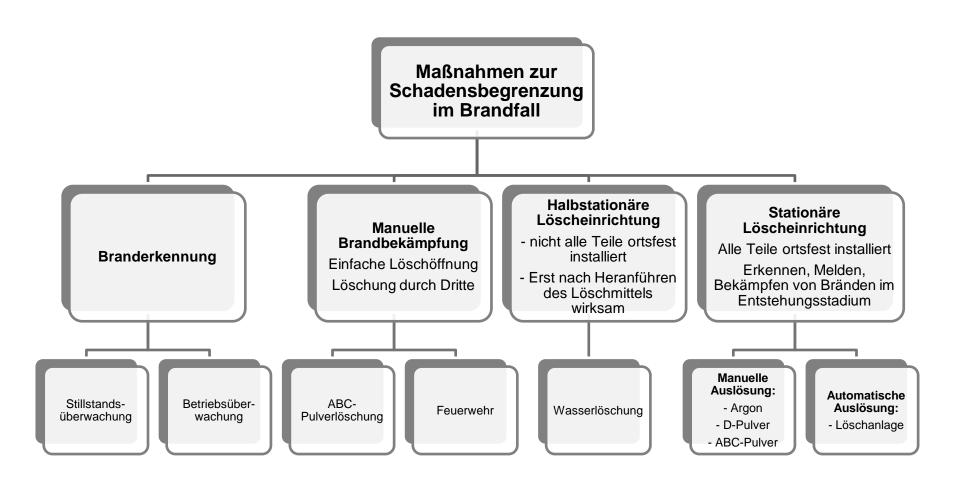
- Einzelfunken werden mit Wasser gelöscht → nicht für Leichtmetalle
- Mindestrohrlänge zwischen Erkennung und Löschung beachten (i.d.R. 6m)



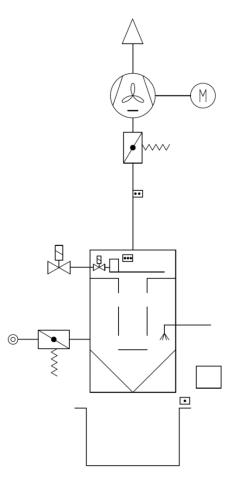
Schutzausführung B: Inertisierung mit Feststoff


Die **Feststoffinertisierung** bietet die Möglichkeit, aus einem brennbaren Staub ein nicht brennbares Staubgemisch zu generieren. Hierfür wird **Kalksteinmehl** über eine **Dosiereinrichtung** (DOS-K1 oder DOS-K2) dem brennbaren Staub hinzugefügt.

- Es kommt zu einer Herabsetzung der Brennzahl
- · Das Mischungsverhältnis ist geringer als beim Explosionsschutz.
- Auf dem Filtermaterial bildet sich in Form des Staubgemisches eine zusätzliche Schutzschicht auf den Filterelementen

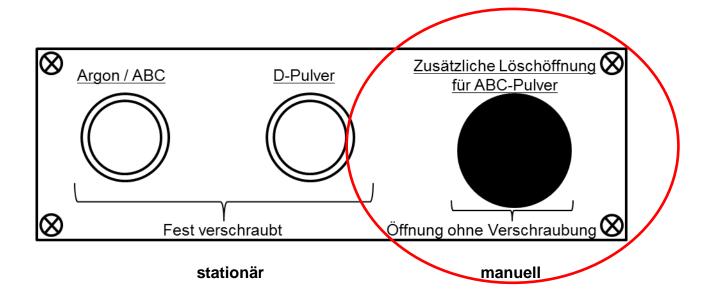


Der Arbeitszyklus Feststoffinertisierung


Übersicht Schutzausführung C

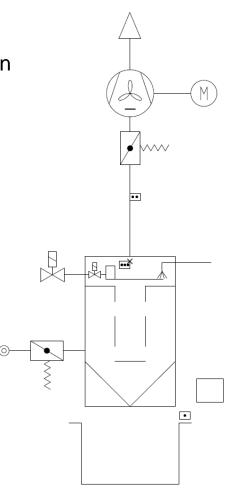
Manuelle Brandbekämpfung

- Einfache Löschöffnung
- · Löschung durch Dritte
- Brandbekämpfung unmittelbar nach der Brandentstehung, z.B. ABC-Löscher, Feuerwehr
- Bei organischen Stäuben kann ein 12 Kg
 ABC-Pulverlöscher ausreichen.
- Gelöscht wird nach Branderkennung.
- Der ABC-Pulverlöscher ist nicht fest mit dem Filtergerät verschraubt.
- Die Löschöffnung lässt sich im Brandfall leicht öffnen.
- Das Löschpulver verteilt sich im Innenraum des Filters und erstickt die Flamme.



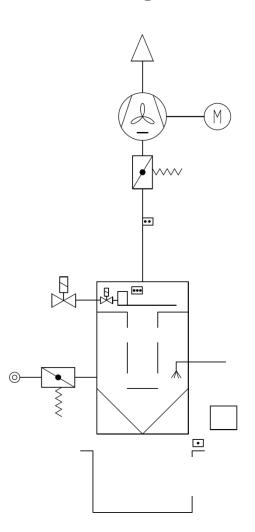
M	Motor
	Ventilator
	Separate Druckluftabsperrung
	Motorische Absperrklappe mit spannungslosem Rücklauf – 3 % Zwangsöffnung
•	Motorische Absperrklappe mit spannungslosem Rücklauf – dicht schließend
•	Behälter- Temperaturüberwachung
• •	IR-Funkenerkennung, optional zzgl. Rauchmelder
•••	Wärmemaximalmelder
	Manuelle Löschvorrichtung
	Handauslösung

Löschadapterplatte


- für manuelle Brandbekämpfung (ABC-Pulver-Löscher)
- für stationäre Löscheinrichtungen mit manueller Auslösung
 - Anschluss einer Argon- oder D-Pulver-Flasche möglich
 - Zur sicheren Brandlöschung fest angeschlossen

Halbstationäre Löscheinrichtungen

- Löscheinrichtungen, die nicht in allen Teilen ortsfest installiert sind
- Werden erst nach Heranführen des Löschmittels wirksam.
- Brandbekämpfung unmittelbar nach der Brandentstehung
- Beispiel: Wasserlöscher



M	Motor
	Ventilator
	Separate Druckluftabsperrung
	Motorische Absperrklappe mit spannungslosem Rücklauf – 3 % Zwangsöffnung
	Motorische Absperrklappe mit spannungslosem Rücklauf – dicht schließend
•	Behälter- Temperaturüberwachung
••	IR-Funkenerkennung, optional zzgl. Rauchmelder
•••	Wärmemaximalmelder
	Halbstationäre Löschvorrichtung
	Handauslösung

Stationäre automatische Löscheinrichtungen

- Sind in allen Teilen ortsfest installiert
- Das Löschmittel ist vor Ort bevorratet
- Keine manuelle Löschauslösung erforderlich
- Empfohlen, wenn
 - BZ > 4 oder
 - keine Brandmeldung an ständig besetzte Stelle möglich

M	Motor
	Ventilator
	Separate Druckluftabsperrung
	Motorische Absperrklappe mit spannungslosem Rücklauf – 3 % Zwangsöffnung
•	Motorische Absperrklappe mit spannungslosem Rücklauf – dicht schließend
•	Behälter- Temperaturüberwachung
• •	IR-Funkenerkennung, optional zzgl. Rauchmelder
•••	Wärmemaximalmelder
	Automatische Löschvorrichtung

Geeignete Löschmittel

Hauptbrandlast/ Löschmittel	Anwendungsbeispiele	ABC	Argon	D-Pulver	H2O	CO ₂
Filterelemente (geringe organische Staubanteile, Entsorgung über ZS)	GFK-/CFK-Bearbeitung Papierstaub	Х	0	-	0	0
Filterelemente + größere organische Staubmengen (Entsorgung über Behälter)	Laserschneiden von org. Stoffen GFK-/CFK-Bearbeitung Papierstaub	X	0	-	0	0
Filterelemente, geringe Staubmengen im Filter (Entsorgung über ZS), Staubart: Metalle (keine Leichtmetalle)	Thermisches Spritzen	0	X	-	0	0
Filterelemente, größere Staubmengen im Filter (Behälterentsorgung), Staubart: Metalle (keine Leichtmetalle)	Laserschneiden von Metallen Schleifen von Stahl, Messing, Strahlen von Stahl, Messing,	0	X	(X)	0	0
Filterelemente, geringe Staubmengen im Filter (Entsorgung über ZS), Staubart: Leichtmetalle	Al-Bearbeitung mit MMS Schleifen von Al Strahlen von Al	·	Х	-	-	-
Filterelemente, größere Staubmengen im Filter (Behälterentsorgung), Staubart: Leichtmetalle	Al-Bearbeitung mit MMS Schleifen von Al	·	X	(X)	-	-

X = empfohlen

O = möglich

- = nicht möglich

(X) = als Ergänzung empfohlen

Das Löschkonzept ist mit den Brandschutzverantwortlichen des Betriebes abzustimmen

